International Journal Of Engineering Research issn: 23484039
& Management Technology

[JERMT Email: editor@ijermt.org March 2014 Volume 1, Issue 2 Website: ijermt.org

FPGA Based High Performance Hardware I mplementation of AES Using Minimal Resour ces

Swatantra Kumar Suhaib Abbas
M.TECH (VLSI Design) Assistant Professor

SRM University NCR Campus, Ghaziabad

Abstract —

Increasing need of data protection in computer networks led to the development of several cryptographic
algorithms hence sending data securely over atransmission link is critically important in many applications.
Hardware implementation of cryptographic algorithms are physically secure than software implementations
since outside attackers cannot modify them. In order to achieve higher performance in today’s heavily
loaded communication networks, hardware implementation is a wise choice in terms of better speed and
reliability. This paper presents the hardware implementation of Advanced Encryption Standard (AES)
algorithm using Xilinx— virtex5 Field Programmable Gate Array (FPGA). In order to achieve higher speed
and lesser area, Sub Byte operation, Inverse Sub Byte operation, Mix Column operation.and Inverse Mix
Column operations are designed as Look Up Tables (LUTs) and Read Only Memories (ROMSs). This
approach gives a throughput of 3.74Gbps utilizing only 1% of total slices in xc5vIx110t-3-ff1136 target
device.

Keywords— AES; Rijndael; Cryptography; FPGA; Verilog; Encryption; Decryption.

Cryptography allows people to carry over the confidence found in the physical world to the electronic

world. The importance of cryptography is.constantly increasing since the amount of sensitive data being
transmitted over an open environment is also increasing day by day. The more information that is
transmitted in computer-readable form, the more vulnerable we become to automated spying. Cryptography
is not only important in defense applications but also important in real world applications such as E-
commerce, E-mail etc.

Encryption is usually done just before sending data. To utilize the channel resources completely encryption
algorithm must have a speed at least equivalent to data transmission speed. Achieving high throughput for
encryption algorithm for a communication channel of high data rate is a challenging task. The hardware
(FPGAs and Application Specific Integrated CircuitssASICs) implementation of such algorithm which
meets these requirements is done in the present work. FPGAs are chosen considering several advantages
over the other‘counterpart [1].

The AES was published by National Institute of Standards and Technology (NIST) in 2001. Later Rijndael
algorithm was selected as AES algorithm. Rijndael algorithm can have key length of 128, 192 and 256 bits
while block size must be 128 hit {2].

There are many architecture proposals for AES Rijndael algorithm [3, 4], but many of them are poor in
terms of area and speed. This paper proposes a different approach to increase speed by utilizing lesser
resources available in FPGA.

This paper is structured as follows. Section |1 describes the existing AES algorithm and Section 111 describes
the proposed work. The result and conclusion are described in Section IV and V respectively.

The AES is a computer security standard from NIST intended for protecting electronic data. Federal
Information Processing Standards (FIPS) Publication 197 gives the specification of AES.

AES use Rijndael algorithm [5] by Joan Daeman and Vicent Rijimen for both encryption and decryption.
The AES cryptography algorithm is capable of encrypting and decrypting 128 bit data using cipher keys of
128, 196 or 256 hits (AES128, AES196 and AES256) [6].

www.ijermt.org Page 242

International Journal Of Engineering Research & Management Technology ¢sn. 2348-4039

Email: editor@ijermt.org March 2014 Volume 1, Issue 2 Website: ijermt.org
Rijndael encryption consist of four operations
1. Substitution
2. Shift Row
3. Mix Column
4. Key Addition

Plain text (128 bit)

_|

@d Round Key (0)

Sub Byte transformation

Shift Rows 1 to Nr-1

Mix Columns

l ,
@ <£‘ Round Key (i)

Sub Byte transform
Final Round
Shift Rows
T
® <£‘ Round Key (N,)
Cipher text (128 bit)

Fig. 1. Algorithm for AES Encryption [2]

The Rijandael decryption consists of four inverse operations of encryption which are compliment
functions of encryption. They are

1. Inverse Substitution

2. Inverse Shift Row

3. Inverse Mix Column

4. Key addition

The operations of AES Rijndael algorithm for encryption and decryption is given as follows.

A. Sub Byte and Inverse Sub Byte transformation

n the Sub Bytes step, each byte in the state matrix is replaced with a Sub Byte using an 8-bit data from
the Rijndael S-Box. In the Inverse Sub Bytes step, each byte in the cipher matrix is replaced with
corresponding Inverse Sub Byte. Sub Byte operation provides the non-linearity in the cipher. The S
Box used is derived from the multiplicative inverse over Galois Field (2°) [7], known to have good
non-linearity properties. Much S-Box implementation [7] use combinational circuit consists of an
adder, squarer and constant multiplier. Rijndael S-Box is not shown for brevity.

www.ijermt.org Page 243

International Journal Of Engineering Research & Management Technology ¢sn. 2343-3039

March 2014 Volume 1, Issue 2

Email: editor@ijermt.org Website: ijermt.org

B. Shift Row Transformation

The Shift Rows transformation cyclically shifts the bytes in each row by certain offset to the left. For
AES, the first row is left unchanged. Each byte of the second row is shifted by one to the left.
Similarly, the third and fourth rows are shifted by offsets of two and three respectively. Inverse Shift
Row transformation does the same shift operation towards right. Fig.2 shows the Shift Row operation.

Bl c[D
F| G |H
Shift 1 Left
J|I KL
—Shift-2-teft|
[
N|lo]|P
|__Shift 31 eft/
Bl c D
G| HI|E
L J |a
¢
M| NO

Fig. 2. AES Shift:-Row Operation

C. Mix Column and Inverse Mix Column operation
In the Mix Column step, the four bytes of each column of the state are combined using an invertible
linear transformation. All entries in the state matrix are considered to be a polynomia and it is
multiplied by a fixed polynomial. The Mix Column and inverse Mix Column transformation are
represented in matrix form as form as equation 1, 2.

rely - o B
¥ w2 ui ool oyt
r'.".. . i M. i A.--I |"'. -|
= L (W F LB] wo =l
do;| T |01 oL 02 03|
T 03 0 o1 ollra
b7 vE oy up 097 [%os
by ; 09 O0E 05 OD||%.;
bas| T JUD 01 uE oo |[eay
b 108 oD 01 oFl|ay,

www.ijermt.org

Page 244

International Journal Of Engineering Research & Management Technology ¢sn. 2348-3039

Email: editor@ijermt.org March 2014 Volume 1, Issue 2 Website: ijermt.org

Where c¢; and d;j are Mix Column input and Output respectively, while a; and by are respectively the
inputs and outputs of Inverse Mix Column operation.

D. Add Round Key operation

In this operation, bitwise exclusive-or (XOR) operation is performed between outputs from Mix Column
and Round Key. For AES-128, 128 hit XOR operations are performed.

The proposed architecture is designed to get maximum speed and lesser area by mapping all the four
Logical functions of AESto LUTs, ROMs and Block RAMSs. The proposed architecture has three parts

1. Key Generation Module
2. Encryption Module
3. Decryption Module.

The AES encryption and decryption core unit contains key generation module as a common unit. This
module gives necessary key expansion for both encryption and decryption functions. Fig.3 presents the
block diagram of AES Rijndael encryption and decryption with - Key Generation Module as a common
unit. The key generation module consists of key register of 128 hits, S-Box and XOR gates for bitwise
XOR operation.

Key Generation Module

Input Output
Signals j E Signals
Encryption/Decryption
Module

Fig. 3. AES Encryption and Decryption Unit Block Diagram

It is designed to produce round keys on each positive edge of the clock, when it is enabled. However in
the proposed work, the key generation architecture does not require any hardware for shift operation
and the port mapping between key register and S-Box is done according to the required shift. Hence the
proposed work-offers the advantage in area. Also in the proposed work the bits are rearranged on data
path from register to S-Box and the round constant required for each rounds are stored in ROM and
retrieved.on each clock. Fig.4 represents proposed architecture of key generation unit.

lock
cloc Round Constant
reset
Koy T Key 32 bi’t Shift S-Box «
—
Register 128 \ .—(
bit o
32 bit w(0)
N
— ; y :
32 bit w(l) -\
\ ./ y
32 bit w(2) o -\
32 bit w(3) FOR
128 bit il

Fig 4 Architecture of Key Genration

www.ijermt.org Page 245

International Journal Of Engineering Research & Management Technology ¢sn. 2348-3039

Email: editor@ijermt.org

March 2014 Volume 1, Issue 2 o
Website: ijermt.org

The encryption module takes 128 bit text to be encrypted and receives round key from key generation
module to do each round of encryption.

datain(127:0) |
keyin(127:0) 1

clk

cipher (127:0)

done

7 Encryption
reset { Module

start |
stop_mix |
terminate |

h 4

Fig. 5. Encryption Module

Start, stop_mix, terminate are control signal produced by the control unit. The “done’ signal is provided to
indicate that encryption is done. Architectureis as shown in Fig. 6.

In the proposed work for reducing the hardware of entire architecture; the control unit of encryption module
is not designed separately. The control unit of key generation module which is a4-bit counter is designed to
control the entire functioning of encryption module. The sharing of control unit by both encryption and
round key generation gives unique advantage of reduction in hardware as compared to other
implementations [1, 3].

RESET

V

DATA 128-B(]

vy

[CIPHER 128-BIT

KEY 128-BIT

CLOCK

v

DATA REGISTER

ROW MIX S-BOXOUT MIX COLUMN OUT
patan27:0 o XOR OUT[127:0] SHIETRAW [127:0] SRR [127:0] mix coLumn | 1227:01

DONE

KEY [127:0] |

SELECT

A\

START

L0AD | COUNTER J
T |

cz V=

v

[~

Fig. 6. Proposed architecture of encryption module

In the last round, Rijandael algorithm skips Mix Column Operation. To incorporate this functionality

www.ijermt.org

Page 246

International Journal Of Engineering Research & Management Technology ¢sn. 2348-3039

March 2014 Volume 1, Issue 2 L
Email: editor@ijermt.org Website: ijermt.org

proposed design use a Multiplexer and NAND gate as shown in Fig. 7.

Mix Column Output

Sub Byte output >

MUX Output

—

—— count(0)
[~ count(2)
count(3)

o —
MUX
\

Fig. 7. Hardwareto Skip Mix Column Operation for Last Round

NAND gate and the 4-bit counter (Controller) are used to set and reset selection line of
Multiplexer. For count one to ten the selection linewill be in set condition and multiplexer will
pass Mix Column output. However on last round, count will-be eleven so selection line will reset
and pass Sub Byte output.

hift Row operation is designed in such away that it does not take any hardware. After Round
Key operation data is given to S-Box with required shift by port mapping the signal according to
required shift in Verilog HDL: description of the design. Since there is no hardware for Shift
Row operation design gets the advantage of area; power and speed.

In the proposed work, the S-Box is implemented by a LUT having 8 bit address (256 addresses)
and a data width of 8 bit. This implementation gives higher throughput for the design by
significantly decreasing delay in data path. Asa result the proposed design takes lesser number
of slices when compared with other combinational technique proposed in[7].

The Mix Column operation of AES consists of Galois multiplication and four input XOR
operation. -But. unlike combinational” implementation [8] of Galois field multiplication, the
proposed design uses ROM based implementation of Galois multiplication which makes Galois
multiplication significantly faster avoiding combinational delays. For an 8-bit data there are 256
multiplication conditions and all the conditions are stored in (256 x 8) ROM

In the proposed work the Mix Column encryption hardware uses two of such ROM for Galois
multiplication of 2’.and ‘3’ and for performing 4-Input XOR operation in Mix Column
operation, the proposed design use 16 x 1 ROM with the result that Mix Column operation offers
higher speed and uses minimum number of slices in the hardware (FPGA).

The decryption unit also uses same design approach for the entire architecture and takes 20
clock cyclesto decrypt the given cipher back to original text.

Inverse S-Box architecture uses the same design of S-Box. Entry of LUT is changed according
to Inverse Sub Byte transformation. Mix Column operation is implemented using 256X8 ROM.
Four such ROMs are designed for the Galois multiplication of 9, 11, 13 and 14. 4-Input XOR
operation is designed by 16x1 ROM. Architecture of Decryption module is same as encryption
module with all complimentary functions of encryption. Decryption unit contains an extra
register for storing Round Keys. Storing key is important since first round decryption use tenth
round key and second round use ninth round key and so on. Count register is synthesized as B-
Ram to save number of slices. ‘Count’ input provides the address of key register location to be

www.ijermt.org Page 247

International Journal Of Engineering Research & Management Technology s 23a8-4039

March 2014 Volume 1, Issue 2 o
Email: editor@ijermt.org Website: ijermt.org

accessed. The Architecture of decryption module is shown in Fig. 8. _

KEY 128 BIT|

rl: TEXT 128 BIT
KEY [127:0] TEXT [127:0]

KEY [127:0]

KEYRAM

READ /WRITE

START ? DONE
CE DONE
COUNTER I

LOCK LOAB-._
cLocK
CLOCK_ CIPHER [127:0] \ MIX COLUMN INVERSE SHIFT
& e INVERSE MIX
DATA REGISTER xor JrOROUT|[127:0] o OUT[127+ J e oW
Jl_ﬂ> 7
™M
CIPHER 2 INV S-BOX
CIPHER [127:0] u
1288 3y TRANSFORMATION
i _l—e X |muxout[127:0] [127:0]

RESET

INVERSE MIX ROW OUTPUT

Fig. 8. Proposed architecture of Decryption module

Implementation Tools
Simulation: Modelsim 10.1
Synthesis: Xilinx ISE 12.1
5.3.1XILINX ISE 12.1

Implementing Verilog HDL Designs Using Xilinx I SE
This following shows how to create, implement and synthesize Verilog HDL designs for
implementation in FPGA chipsusing Xilinx ISE 12.1

1. Launch Xilinx ISE from either the shortcut on your desktop or from your start menu
under Programs > Xilinx ISE 12.1 > Project Navigator.

2. Start anew project by clicking File > New Project
== Project Mavigator [(M.53d) - C:\Docu

TENEIEN Edic Wiew Project Source Process

| 5 ¢
'O & X

mulation

o] e
[11]

Open Example. ..

Project Browser., .,
Copy Projectk...
Close Project

Fewy CErlHM HF)
open... Chrl4O
Close

H | B B [

Wi

i

www.ijermt.org Page 248

International Journal Of Engineering Research & Management Technology s 23a8-4039

March 2014 Volume 1, Issue 2 L
Email: editor@ijermt.org Website: ijermt.org

3. In the resulting window, verify the “Top-Level Source Type” is VHDL. Change the
“Project Location” to a suitable directory and give it whatever name you choose

E= reww Project Wizard =]

Create Mew Project
Specify project location and type.

Enter a name, locations, and comment For the project

Pz : aes100
Location: | C:vDocuments and Settings\karthik\DeskiopiFinahsub_pipelined_aeskilass 100 1 ==
wworking Directory: | CiiDocuments and SettingsikarthikDesktopifinalisub_pipelined_aeskijass100 | E]

Drescription:

Select the tvpe of top-lewel source For the project
Top-lewel Source Eype:

T -

T .

4. The next window shows the details of the project and the target FPGA. We will be
synthesizing designs into FPGA. so it important to match the target with the
particular board/chip you will be using. It will be done in Virtexé X C6V CX240T

T ——— |
4 - e—_ = -
(<] Dew Projact Wizerd B ——
e
Project Settings
e device and project properties.,
1 i i mred Gmiiges fiow For tha praject
Fropary Mame [Vaius
Product Cateaory i =
Farnily Virtest =
Davica KCevLXZAOT =
Packaae Friise =]
Speed Y =
Top-Level Source Type oL
Synthesis Toal ®ST (WHDL Verilog) =1 [u
Sirnulator ISim (VHDL Verilog) =
Preferred Lanquace Verilog =1
Property Specification in Project File | Store all values =
[anusi Compile Orde i
VHDL Source An VDL 53 =
Enable Message Filterina =1
e) 1

5. Since we are starting a new designthe next couple of pop-up windows aren’t
relevant, just click next and next and Finish.

6. Y ou should now be in the main Project Navigator window. Select Project >Add
source... from the menu.

=—

= ISE Project Mawvigator (M_.53d) - C:\Documents
File Edit s Source Frocess Tools L
A= A= =" Pleve Source. ..
Desian
[| e = HE3E 1 5] add Copyw of Source. ..
EEI Hi=srarchey Mews WHEL Librarsy. ..
o2 S aes100 Manual Compile Srder
— = End =cSs1Z Import Cuskom Compile File Lisk. ..
EETRED Disable Hierarchy Reparsing
=] The Force Hierarchw Reparse
sy o ci - .
i Cleanup Projsce Filss. ..
Lo From o archive. ..
using
— Librar GSenerate Tol Scripk. ..
Use: Design Soals 8 Strakegies. ..

E} Mo Proces = Desiagn Summary fReporks
— Design Properties. ..

7. The Verilog files to be added from the specified folder.

www.ijermt.org Page 249

International Journal Of Engineering Research & Management Technology s 23a8-4039

March 2014 Volume 1, Issue 2

Email: editor@ijermt.org Website: ijermt.org

Add Source

Look ir: | I sub_pipelined_asskl

Fecent

@

Desktop

My D ocurments

¢

Py Computer

EEEEEEEEEREERER

| 2

Open 1

Cancel I
4

FAss Metumark.
Places

File name “encreption_last_round. -t~ |

Fowh Cmco Cosc "I

[affine_transtarm. .

Files of tupe: *owhdl v <k

| Sourcesl = txt = whd

8. Next window shows the successfully added source files.

E Adding Source Files. ..
The Following allovss you ko see the skatus of the source Files being added ko the projece, and
alloves wou Eo specify the Design Wiews association For sources which are successfully added Eo
the project.
Fil= MNam= Associakion Library e
1 @) {aFfFine_transForm.w A =~ || wvsorke —~
= @ encrvption_last_round.w Al || vorie ~
= @ =ncrvption_round. e Al || acre ~
e @D inverse_affine_transform. Al e || vorie ~|
= D inverse_isormorphic_mapping. s | Al v or —
= oD inverse_mix_columns. Al || wpork —
el D inverse_shift_rowes .. Al)| P—y —~—
= @ isormorphic_rmapping. . Al el ror ke —
= @D kev_expansion.. all o |[vwork ~
10 | @D kew_expansion_pipe_1 . Al e |k —~
11 | @ kew_expansion_pipe_Z.w Al e |k -~
12 | @ kew_expansion_pipe_S.w Al e |k —~
. - . ~
Aadding Files ko projece: [----------------------]34 of 34 Files (0O errors)
[= 1 [cane=t 1 [rew]

9. The source files which are added to the Top module are get synthesized by synthesize

XST

158 e ol 50 RO B e O o s e

T Fle Edit View Project Source Process Tools Window Layout Help INEE
DAE@Lfsnbxloal -[rram Q| Tolserce[@
[Design ~ 08 x| . |5 Design Overview - -
@) summary D SRS ul
o e BT o [} 108 Properties Project File: 2es100.xise Parser Errors: No Errors
licrrchy [Medule Level Utiization Hodule Name: top ‘Implementation State: New
8 aest00 @ [Timing Constraints = = BV FTI1% E
B €3 xec6vb240t1F1156 0 [Pinout Report o= Dence o rors:
%, top (topy) [Clock Report Product Version: ISE 12.1 *Warnings:
= @ Statc Timing “ || pesion Goak: Balanced *Routing Results:
Errors and Wernings
L] B Parser Messeges Design Strategy: i Defol furlocked +Timing Constraints:
a %) Synthesis Mess: Environment: +Final Timing Score:
P = [Transiation Messages
[} Map Messages
[Place and Route Messages P & =
[Timing Messages
[Bitgen Messages Report Name status Generated Errors Warnings Infos

P T2 MNoFrocesses Rumning [2 Alllmplementation Messages Synthesis Report

=] Deteiled Reports Ewre—

1, | Processes:top i[O Synthesis Report _ || |ranseton Repor

il Design Y. — Map Report.

e Design Utilities Design Properties Place and Route Report

A User Constrains : 9

= Synthesize - X5T Optional Design Summary Contents Power Report

= Implement Design *[] Show Clock Report Post-PAR Static Timing Report
Generate Programming File [] Show Failing Constreints -,
Configure Target Device -~ [] Show Warnings
Analyze Design Using ChipScope [Show Errors
Secondary Reports I =]
f | 154

1= start | =3 Design |11 Fies | [tbrared | Design Summry [x]]

Consoe oO8x
NFO:HDLCompiler: 1062 - Parsing Verilog file "C:/Users/win7/Music/Desktop/sub_pipelined aeskl/xsquare_¢.v" into Library work Z
NFQ:ProjectMgmt: 656 - Parsing design hierarchy completed successfully.

Launching Design Summary/Report Viewer... s

« i ’

10. Synthesized report can be obtained on the console and device utilization also

estimated

www.ijermt.org

Page 250

International Journal Of Engineering Research & Management Technology s 23a8-4039

March 2014 Volume 1, Issue 2 o
Email: editor@ijermt.org Website: ijermt.org

=7 € Project Navigator (M53d] - FAAKPRO\sub_pipelined_sesic\aes100iaesi00aise - Design Summary (Synthesizedl] o L . T N o S
Help [5]x

L Fie Edt View Project Souce Process Took Window Layout

B mATz,RPELT

wO8x |5 Des

top Project Status (12/23/2012 - 23:47:24)
Project File: s, e Parser Errors: o Errocs
Hodule Hame: o Implementation State: Simihesized

Wt
!
i
g

)
H
g

Target Device: eE240t-1FF1155 Erors: o Ermors

Product Version: S 1.1 * Warnings: i Wamings

= |[pesign Goak [—" +Routing Results:
Design Strategy: o + Tuming Constraints:
« Final Timing Score:

&
IR

1o B ||

Device Utikzation Summary (estimated values) 5]
Used Available Ubiization
1281 EE

P 1) toProcesesuming

Zm 150720 5%

pars 781 2434 %
£ 500

Status | Generated Erors |Warnings | Infos

~O8x

From the console the maximum frequency obtained is 339.328MHz. which is used to calculate
the Throughput as mentioned in section 4.2

Throughput = 339.328MHz x 128
= 43.43Gbp

SIMULATION RESULTS
For simulation using the Modelsim simulator of version 10.1c

1.ModelSim should successfully launch and will open several subwindows by default. For now
we just need the “Wave” and “Transcript subwindows; so close the other subwindows.

2. To conduct the simulation we basically. need to know two commands, “force” and “run”.
Force is used to set the value of any input variable. Then Run the simulation for a specific
amount of time. To use a Force command, in the transcript window simply type Force, space,
logic variable you wish to set, space, the value you wish to assign (O or 1).

Simulation Result For Joint Encryptor And Decryptor

= ftopjck
£ [topjrst
£ jtopje_dbar
4 ftop/start_cipher
B jtopikey_data
B¢ ftopjdpher_in_text (3
.. topjcipher_done
|- ftop/cpher_out_text 3243
4 ftopjround?_enable
4 topfround3_enable
4 Jtopfround4,_enable
4 Jtopjrounds_enable
4 Jtopjrounds_enable
4 ftopjround?_enable

& ftopjround?_data_in
B-* jtopjrounds_data_in
B-* ftopjrounds_data_in
B4 ftopjround10_data_in d4enbebfbad..

AES Rijndael algorithm is simulated and synthesized using Xilinx 13.1 I SE tool and the targeted FPGA is
5vIx110tff1136-3 which belongs to Virtex-5 family. The design uses only LUTs, ROMs for al the
operations of AES encryption and decryption. This approach reduces device utilization and significantly
improves the speed compared to other implementation [3,4,9]. The key register in the decryption module is

www.ijermt.org Page 251

International Journal Of Engineering Research & Management Technology ¢sn. 2348-3039

March 2014 Volume 1, Issue 2 L
Email: editor@ijermt.org Website: ijermt.org

synthesized as Block-Ram to reduce the number of slices used. The utilization summary for device
5SvIx110tff1136-3 is presented in Table .

Table1. SLICE LOGIC UTILIZATION

128 out of
Number of Slice Registers 69120 0%

11 out 6912
Number of Slice LUTs 06 of 0 1%

11 out 6912
Number used as Logic 06 of 0 1%

Table 2. COMPARISON [4]

Max.fre LUT
Design Delay g |(Throug| s Regis
(ns) uency | hput ters
(Gbp
(MH2) | 9
Proposed 292.4
design 3.42 0 3.74 | 1% 1%
235.2
M. Goswami | 4.25 9 2.73 | .7% |1%
&S.
kannujiya[1]
W. Wei, 201.2 Not
C.ie, 497 0 2.57 | Available
X.Fe[3]

Kampen* | 5.291] 189..016 | 73%| 39%

JCadtillo* | 6.711 149 |.0375 | 94%| 57%

Four shox
AES* 6.493| 154 |.241 93%]| 22%

H.Satyanaray
an* 3.690] 271 | 2.166 | 81%] 33%

AES-128 algorithm for encryption and decryption is implemented in Virtex-5 FPGA. With the designing of
all the operations as LUTs and ROMs, the proposed architecture achieves a throughput of 3.74 Gbps and
thereby utilizing only 1% of slices in the targeted FPGA. Since the speed is higher than the already reported
systems, hence the proposed design serves as the best high speed encryption algorithm and is thus suitable
for various applications. Moreover with less area utilization, the proposed design can be embedded with
other larger designs aswe

www.ijermt.org Page 243

International Journal Of Engineering Research & Management Technology ¢sn. 2348-3039

March 2014 Volume 1, Issue 2 L
Email: editor@ijermt.org Website: ijermt.org

Refrences:

1. M. Goswami and S. Kannojiya, “High Performance FPGA Implementation of AES Algorithm with 128-Bit Keys,” Proc.
|EEE Int. Conf. Advances Computing Comm., vol. 1, Himarpur, India, 2011, pp. 281-286.

2. FIPS197, NIST - National Institute of Standards and Technology, “Announcing the ADVANCED ENCRYPTION
STANDARD (AES),” http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2001.

3. W. Wei, C. Jie and X. Fei, “An Implementation of AES Algorithm on FPGA,” IEEE 9" Int. Conf. on Fuzzy Systems and
Knowledge discover 2012, pp. 1615-1617.

4., U. Kretzschmar, A. Astarloa, J. Lazaro, U. Bidarte and J. Jimenez, “Robustness analysis of different AES
implementations on SRAM based FPGAs,” Int. Conf. on Reconfigurable Computing and FPGAs 2011, pp. 255-260.

5. J. Daeme and V. Rijmen, “AES proposal: Rijndael,” NIST AES Proposal, June 1998.

6. W. Stallings, “Cryptography and network security principles and practice,” Pearson edition 2009, pp. 135-160.

7. PV.S Shadry, A. Agnihotri, D. Kachhwaha, J. Singh and M.S. Sutaone, “A Combinational Logic Implementation of S-
Box of AES,” IEEE 54" Int. Midwest Symp. on Circuits and Systems (MWSCAS), Aug. 2011, pp. 1-4.

8. S. Kaur and R. Vig, “Efficient Implementation of AES Algorithm in FPGA Device,” Int. Conf. on Computational
Intelligence and Multimedia Applications, Dec. 2007, pp. 179 — 187.

9. H. Trang and N.V. Loi, “An efficient FPGA implementation of the Advanced Encryption Standard algorithm,” IEEE Int.
Conf. on Computing and Communication Technologies, Research, Innovation and Vision for.the Future (RIVF), 2012,
pp. 1-4.

www.ijermt.org Page 244

