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Abstract 

According to scientific applications, level of precision is more demanding computational 

point which can be double precision floating point arithmetic‘s or quadruple precision 
floating-point arithmetic‘s. Here we analyze the evolution of double-precision floating-

point& quadruple precision floating-point computing. Since last few years this application 
has more demand. Modern science and Engineering models mostly depend on supercomputer 
simulation to reduce experimentation requirements. The results show that peak-performance 

for precision addition, Subtraction, multiplication and division on FPGAs is already better 
than general-purpose processors (GPPs).The canonical signed digit (CSD) representation is 

one of the existing signed digit representations with unique features which make it useful in 
certain DSP applications focusing on low power, area efficient and high speed arithmetic.  
Canonical signed digit is a recoding technique, which recodes a number with minimum 

number of non-zero digits. As the number of partial products depends on the number of non-
zero digits, by using Canonical recoding, the number of non-zero digits will be reduced, 

thereby reducing the number of partial products. In this paper, Double & quadruple precision 
floating point Addition, Subtraction, multiplication& Division using canonical signed digit is 
proposed and is compared with Conventional multiplication technique. The design is 

implemented in Verilog and simulated using Xilinx 9.2 ISE.  
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Introduction 

Soon after the introduction of the FPGA in the mid-1980‘s an interest developed in using the 
devices for DSPs and Digital communication applications, especially for digital filtering 

which can take advantage of specialized constants embedded in hardware. Since a large 
portion of most filtering approaches involves the use of multiplication, efficient adder and  
multiplier implementations in both fixed- and floating-point were of particular interest. Many 

early FPGA multiplier implementations used circuit structures adapted from the early days of 
LSI development and reflected the restricted circuit area available in initial FPGA devices. 

As FPGA capacities have increased, the diversity of arithmetic circuit‘s implementations has 
grown.  
The design of embedded systems, that is, circuits designed for specific applications, is based 

on a series of decisions as well as on the use of several types of development techniques. For 
example: 

1. Selection of the data representation 
2. Generation or selection of algorithms 
3. Selection of hardware platforms 

4. Hardware–software partitioning 
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5. Program generation 

6. New hardware synthesis 
7. Co-simulation, co-emulation, and prototyping 

Some of these activities have a close relationship with the study of arithmetic algorithms and 
circuits, especially in the case of systems including a great amount of data processing (e.g., 
ciphering and deciphering, image processing, digital signature, biometry).  

 

 Sign Exponent Fraction Bias 

Double 
Precision 

1[63] 11[62-
52] 

52[51-
00] 

1023 

Quadruple 

Precision 

1[12

8] 

15[127-

112] 

112[111-

00] 

262143 

Table I. Double & Quadruple Floating Point Sign, Exponent, Fraction & Bias bits  
 

 
1. Architecture of Floating Point 

 
A floating-point unit (FPU, colloquially a math coprocessor) is a part of a computer system 

specially designed to carry out operations on  floating point numbers. Typical operations are 
addition, subtraction, multiplication & division 
 

 
 

 

 
Fig 1.1 Floating Point Architecture 
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When a CPU is executing a program that calls for a floating-point operation, there are three 
ways to carry it out: 

 A floating-point unit emulator (a floating-point library) 
 Add-on FPU 

 Integrated FPU 

Some systems implemented floating point via a co-processor rather than as an integrated unit. 
This could be a single integrated circuit, an entire circuit board or a cabinet. Where floating-
point calculation hardware has not been provided, floating point calculations are done in 

software, which takes more processor time but which avoids the cost of the extra hardware. 
For particular computer architecture, the floating point unit instructions may be emulated by a 

library of software functions; this may permit the same object code to run on systems with or 
without floating point hardware. Emulation can be implemented on any of several levels: in 
the CPU as microcode (not a common practice), as an operating system function, or in user 

space code. When only integer functionality is available the CORDIC floating point 
emulation methods are most commonly used.  

A. A floating-point unit emulator 

Some floating-point hardware only supports the simplest operations - addition, subtraction, 
and multiplication. But even the most complex floating-point hardware has a finite number of 

operations it can support - for example, none of them directly support arbitrary- precision 
arithmetic. 

When a CPU is executing a program that calls for a floating-point operation not directly 
supported by the hardware, the CPU uses a series of simpler floating-point operations. In 

systems without any floating-point hardware, the CPU emulates it using a series of simpler 
fixed-point arithmetic operations that run on the integer unit. The software that lists the 

necessary series of operations to emulate floating-point operations is often packaged in a 
floating-point library. 
 

B. Add-on FPU 

In the 1980s, it was common in IBM PC/compatible microcomputers for the FPU to be 
entirely separate from the CPU, and typically sold as an optional add-on. It would only be 
purchased if needed to speed up or enable math- intensive programs. 

The IBM PC, XT, and most compatibles based on the 8088 or 8086 had a socket for the 
optional 8087 coprocessor. The AT and 80286-based systems were generally socketed for the 
80287, and 80386/80386SX based machines for the 80387 and 80387SX respectively, 

although early ones were socketed for the 80287, since the 80387 did not exist yet. Other 
companies manufactured co-processors for the Intel x86 series. These included Cyrix and 

Weitek. 
 

C. Integrated FPU 

In some cases, FPUs may be specialized, and divided between simpler floating-point 

operations (mainly addition and multiplication) and more complicated operations, like 
division. In some cases, only the simple operations may be implemented in hardware or  

microcode, while the more complex operations are implemented as software. 
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In some current architecture, the FPU functionality is combined with units to perform SIMD 

computation; an example of this is the replacement of the x87 instructions set with SSE 
instruction set in the x86-64 architecture used in newer Intel and AMD processors. 

A. Significant 

The significant  or  coefficient or mantissa  is  the  part  of  floating that  contains  its  

significant  digits.  Depending  on  the  interpretation  of  the exponent,  the  significant  may  

be  considered  to  be  an integer or  a fraction. For  example,  the  number  123.45  can  be  

represented  as  a decimal floating-point  number  with  integer  significant  12345  and  
exponent  −2.  Its value is given by the arithmetic: 

12345 × 10−2 

 This  same  value  could  also  be  represented  in normalized  form with  the 
fractional  (non-integer)  coefficient  1.2345  and  exponent  +2: 

1.2345 0+2 

B. Exponentiation  

Exponentiations a mathematical operation, written as an, involving two numbers, the based 

and the exponent (or power) n.  When n is  a positive  integer,  exponentiation  corresponds  
to  repeated  multiplication;  in  other  words,  a  product  of n factors  of a(the  product  itself  

can  also  be  called power) 

 

Just as multiplication by a positive integer corresponds to repeated addition 

 
 The  exponent  is  usually  shown  as  a super script to  the  right  of  the  base.  The  

exponentiation can  be  read  as raised  to tenth  power, raised  to  the  power  [of]n,  or  
possibly raised  to  the  exponent  [of]n,  or  more  briefly  as a top  then.  Some  exponents  
have  their  own  pronunciation:  for  example,a2 is  usually  read  asasquaredanda3asacubed.  

When  superscripts  cannot  be  used,  as  in  plain ASCII  text,  common  alternative  formats  
include  a^n  and  a**n. 

 
C. Special Cases 

 

A summary of special cases is shown in Table 1.1. These are useful in representing 
exceptional cases like adding ∞ to ∞, multiplying ∞ to ∞ etc.,  

i. De-normalized Numbers 

A de-normalized number is any nonzero number with an exponent field of 0.  The exponent 

offset is 1023, but for the case when the value in the exponent field is 0, then the offset is 
changed to 1022.  The value multiplied by the mantissa is 2^ (-1022).  The exponent offset is 

changed to 1022 because for de-normalized numbers, the implied leading ‗1‘ is no longer 
included.  So to calculate the actual value of a de-normalized number, you multiply 2^ (-
1022) by the mantissa without the leading ‗1‘.  The range of values that can be represented by 

a de-normalized number is approximately 2.225e-308 to 4.94e-324. 
For example, the number 2e-309 is represented in the double precision floating point  

 

ii. Infinity 

The behavior of infinity in floating-point arithmetic is derived from the limiting cases of real 

arithmetic with operands of arbitrarily large magnitude, when such a limit exists. Infinities 
shall be interpreted in the affine sense, that is: −∞ < {every finite number} < +∞. Operations 

http://en.wikipedia.org/wiki/Exponent
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Operation_(mathematics)
http://en.wikipedia.org/wiki/Radix
http://en.wikipedia.org/wiki/Positive_integer
http://en.wikipedia.org/wiki/Multiplication
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on infinite operands are usually exact and therefore signal no exceptions, including, among 

others, 

 Addition (∞, x), addition(x, ∞), subtraction (∞, x), or subtraction (x, ∞), for finite x 

 Multiplication (∞, x) or multiplication(x, ∞) for finite or infinite x ≠ 0 
 Division (∞, x) or division(x, ∞) for finite x 

iii. NaN  

A NaN is (not a number) — a symbolic floating-point datum. There are two kinds of NaN 
representations: quiet and signaling. Most operations propagate quiet NaNs without signaling 

exceptions, and signal the invalid operation exception when given a signaling NaN operand. 
Quiet NaNs are used to propagate errors resulting from invalid operations or values, whereas 

signaling NaNs can support advanced features such as mixing numerical and symbolic 
computation or other extensions to basic floating-point arithmetic. For example, 0/0 is 
undefined as a real number, and so represented by NaN; the square root of a negative number 

is imaginary, and thus not represent able as a real floating-point number, and so is 
represented by NaN; and NaNs may be used to represent missing values in computations.  

I. Double Precision Floating Point 

Double precision is a computer numbering format that occupies two adjacent storage 

locations in computer memory. A double precision number, sometimes simply called a 
double, may be defined to be an integer, fixed point, or floating point. Modern computers 

with 32-bit storage locations use two memory locations to store a 64- 
bit double precision number (a single storage location can hold a single precision number).  
 

 

 

 

     

 

 

              Fig.1.3 Double precision floating point format 
 

Double precision floating point is an IEEE-754 standard for encoding binary or decimal 

floating point numbers in 64 bits. Double precision binary floating-point is a commonly used 
format on PCs, due to its wider range over single precision floating point, even if it's at a 

performance and bandwidth cost. As with single precision floating point format, it lacks 
precision on integer numbers when compared with an integer format of the same size. It is 
commonly known simply as double. The IEEE 754 standard defines a double as  

 Sign bit: 1 bit 
 Exponent width: 11 bits 

 Significant precision: 53 bits (52 explicitly stored) 
The format is written with the significant having an implicit integer bit of value 1, unless the 
written exponent is all zeros. With the 52 bits of the fraction significant appearing in the 

memory format, the total precision is therefore 53 bits (approximately 16 decimal 

digits,log102
53≈  = 15.95. The bits are laid out as shown in fig 1.3  

 

The  real  value  assumed  by  a  given  64  bit double  precision data  with  a  given  biased  
exponent and  a52  bit  fraction can be more precisely, 

1 

sign 
bit 

11 bits- 

exponent 
 

53-bits significant 
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II. Quadruple Precision Floating Point 

 In computing, quadruple precision (also commonly shortened to quad precision) is a binary 

floating-point-based computer number format that occupies 16 bytes (128 bits) in computer 
memory and whose precision is about twice the 53-bit double precision. 

This 128 bit quadruple precision is designed not only for applications requiring results in 

higher than double precision,[1] but also, as a primary function, to allow the computation of 
double precision results more reliably and accurately by minimizing overflow and round-off 

errors in intermediate calculations and scratch variables: as William Kahan, primary architect 
of the original IEEE-754 floating point standard noted, "For now the 10-byte Extended 
format is a tolerable compromise between the value of extra-precise arithmetic and the price 

of implementing it to run fast; very soon two more bytes of precision will become tolerable, 
and ultimately a 16-byte format... That kind of gradual evolution towards wider precision was 

already in view when IEEE standard 754 for Floating-Point Arithmetic was framed."This 
gives from 33 - 36 significant decimal digits precision (if a decimal string with at most 33 
significant decimal is converted to IEEE 754 quadruple precision and then converted back to 

the same number of significant decimal, then the final string should match the original; and if 
an IEEE 754 quadruple precision is converted to a decimal string with at least 36 significant 

decimal and then converted back to quadruple, then the final number must match the 
original). 

The format is written with an implicit lead bit with value 1 unless the exponent is stored with 

all zeros. Thus only 112 bits of the significant appear in the memory format, but the total 

precision is 113 bits (approximately 34 decimal digits, ). The bits 

are laid out as follows: 

 

 

 

 

 

 

 Sign bit: 1 bit 
 Exponent width: 15 bits 
 Significant precision: 112 bits  

 
 

III. Implementation & Simulation of Floating Point 
 

A. Addition 

In this Float64 Add is a block name that is provided for free in the form of Verilogcode. The 

code is difficult to read because of removed text formatting and identifiers replaced with 
automatically generated strings. The fully functional code that should work correctly in any 
simulation and synthesis tool can be designed 

1 sign 

bit 

15 bits- 

exponent 

 

112 bits 

significant 

 

http://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#cite_note-1
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Fig 1.2 Floating Point Addition 

 

 

 
                                            Fig 1.3 Floating Point Addition Simulation 
 

 

B. Subtraction 

In this Float64 Sub is a block name that is provided for free in the form of Verilogcode. The 
code is difficult to read because of removed text formatting and identifiers replaced with 

automatically generated strings. 
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                                                          Fig 1.4  Floating Point Subtraction 
 

 
                                             Fig 1.5  Floating Point Subtraction Simulation 
 

 

C. Multiplication 
 

                                             Fig 1.6 Floating Po int Multip licat ion 
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                                           Fig 1.7 Floating Point Multiplication Simulation 
 

D. Division: 

 

 
 

                                                    Fig 1.8 Floating Point Division 
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                                 Fig 1.9 Floating Point Division Simulation 
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