
 International Journal Of Engineering Research

 & Management Technology
 Email: editor@ijermt.org Website: ijermt.org

www.ijermt.org Page 15

March 2014 Volume-1,

Issue-2

ISSN: 2348-4039

Implementation Of High Speed IEEE 754Compliant Double &

Quadruple Floating Point

Prashant Mani Konakalla Aditya Ram
Assistant Professor M.Tech Student
Deptt. Electronics & Communication Engineering Deptt. Electronics & Communication Engineering

SRM University, NCR Campus SRM University, NCR Ca mpus

Abstract

According to scientific applications, level of precision is more demanding computational

point which can be double precision floating point arithmetic‘s or quadruple precision
floating-point arithmetic‘s. Here we analyze the evolution of double-precision floating-

point& quadruple precision floating-point computing. Since last few years this application
has more demand. Modern science and Engineering models mostly depend on supercomputer
simulation to reduce experimentation requirements. The results show that peak-performance

for precision addition, Subtraction, multiplication and division on FPGAs is already better
than general-purpose processors (GPPs).The canonical signed digit (CSD) representation is

one of the existing signed digit representations with unique features which make it useful in
certain DSP applications focusing on low power, area efficient and high speed arithmetic.
Canonical signed digit is a recoding technique, which recodes a number with minimum

number of non-zero digits. As the number of partial products depends on the number of non-
zero digits, by using Canonical recoding, the number of non-zero digits will be reduced,

thereby reducing the number of partial products. In this paper, Double & quadruple precision
floating point Addition, Subtraction, multiplication& Division using canonical signed digit is
proposed and is compared with Conventional multiplication technique. The design is

implemented in Verilog and simulated using Xilinx 9.2 ISE.

Keywords

Canonical signed digit, Double precision floating point number, quadruple floating IEEE,
Verilog

Introduction

Soon after the introduction of the FPGA in the mid-1980‘s an interest developed in using the
devices for DSPs and Digital communication applications, especially for digital filtering

which can take advantage of specialized constants embedded in hardware. Since a large
portion of most filtering approaches involves the use of multiplication, efficient adder and
multiplier implementations in both fixed- and floating-point were of particular interest. Many

early FPGA multiplier implementations used circuit structures adapted from the early days of
LSI development and reflected the restricted circuit area available in initial FPGA devices.

As FPGA capacities have increased, the diversity of arithmetic circuit‘s implementations has
grown.
The design of embedded systems, that is, circuits designed for specific applications, is based

on a series of decisions as well as on the use of several types of development techniques. For
example:

1. Selection of the data representation
2. Generation or selection of algorithms
3. Selection of hardware platforms

4. Hardware–software partitioning

International Journal Of Engineering Research& Management Technology

 Email: editor@ijermt.org Website: ijermt.org

www.ijermt.org Page 16

ISSN: 2348-4039

 March 2014 Volume-1, Issue-2

March 2014

5. Program generation

6. New hardware synthesis
7. Co-simulation, co-emulation, and prototyping

Some of these activities have a close relationship with the study of arithmetic algorithms and
circuits, especially in the case of systems including a great amount of data processing (e.g.,
ciphering and deciphering, image processing, digital signature, biometry).

 Sign Exponent Fraction Bias

Double
Precision

1[63] 11[62-
52]

52[51-
00]

1023

Quadruple

Precision

1[12

8]

15[127-

112]

112[111-

00]

262143

Table I. Double & Quadruple Floating Point Sign, Exponent, Fraction & Bias bits

1. Architecture of Floating Point

A floating-point unit (FPU, colloquially a math coprocessor) is a part of a computer system

specially designed to carry out operations on floating point numbers. Typical operations are
addition, subtraction, multiplication & division

Fig 1.1 Floating Point Architecture

International Journal Of Engineering Research& Management Technology

 Email: editor@ijermt.org Website: ijermt.org

www.ijermt.org Page 17

ISSN: 2348-4039

 March 2014 Volume-1, Issue-2

March 2014

When a CPU is executing a program that calls for a floating-point operation, there are three
ways to carry it out:

 A floating-point unit emulator (a floating-point library)
 Add-on FPU

 Integrated FPU

Some systems implemented floating point via a co-processor rather than as an integrated unit.
This could be a single integrated circuit, an entire circuit board or a cabinet. Where floating-
point calculation hardware has not been provided, floating point calculations are done in

software, which takes more processor time but which avoids the cost of the extra hardware.
For particular computer architecture, the floating point unit instructions may be emulated by a

library of software functions; this may permit the same object code to run on systems with or
without floating point hardware. Emulation can be implemented on any of several levels: in
the CPU as microcode (not a common practice), as an operating system function, or in user

space code. When only integer functionality is available the CORDIC floating point
emulation methods are most commonly used.

A. A floating-point unit emulator

Some floating-point hardware only supports the simplest operations - addition, subtraction,
and multiplication. But even the most complex floating-point hardware has a finite number of

operations it can support - for example, none of them directly support arbitrary- precision
arithmetic.

When a CPU is executing a program that calls for a floating-point operation not directly
supported by the hardware, the CPU uses a series of simpler floating-point operations. In

systems without any floating-point hardware, the CPU emulates it using a series of simpler
fixed-point arithmetic operations that run on the integer unit. The software that lists the

necessary series of operations to emulate floating-point operations is often packaged in a
floating-point library.

B. Add-on FPU

In the 1980s, it was common in IBM PC/compatible microcomputers for the FPU to be
entirely separate from the CPU, and typically sold as an optional add-on. It would only be
purchased if needed to speed up or enable math- intensive programs.

The IBM PC, XT, and most compatibles based on the 8088 or 8086 had a socket for the
optional 8087 coprocessor. The AT and 80286-based systems were generally socketed for the
80287, and 80386/80386SX based machines for the 80387 and 80387SX respectively,

although early ones were socketed for the 80287, since the 80387 did not exist yet. Other
companies manufactured co-processors for the Intel x86 series. These included Cyrix and

Weitek.

C. Integrated FPU

In some cases, FPUs may be specialized, and divided between simpler floating-point

operations (mainly addition and multiplication) and more complicated operations, like
division. In some cases, only the simple operations may be implemented in hardware or

microcode, while the more complex operations are implemented as software.

International Journal Of Engineering Research& Management Technology

 Email: editor@ijermt.org Website: ijermt.org

www.ijermt.org Page 18

ISSN: 2348-4039

 March 2014 Volume-1, Issue-2

March 2014

In some current architecture, the FPU functionality is combined with units to perform SIMD

computation; an example of this is the replacement of the x87 instructions set with SSE
instruction set in the x86-64 architecture used in newer Intel and AMD processors.

A. Significant

The significant or coefficient or mantissa is the part of floating that contains its

significant digits. Depending on the interpretation of the exponent, the significant may

be considered to be an integer or a fraction. For example, the number 123.45 can be

represented as a decimal floating-point number with integer significant 12345 and
exponent −2. Its value is given by the arithmetic:

12345 × 10−2

 This same value could also be represented in normalized form with the
fractional (non-integer) coefficient 1.2345 and exponent +2:

1.2345 0+2

B. Exponentiation

Exponentiations a mathematical operation, written as an, involving two numbers, the based

and the exponent (or power) n. When n is a positive integer, exponentiation corresponds
to repeated multiplication; in other words, a product of n factors of a(the product itself

can also be called power)

Just as multiplication by a positive integer corresponds to repeated addition

 The exponent is usually shown as a super script to the right of the base. The

exponentiation can be read as raised to tenth power, raised to the power [of]n, or
possibly raised to the exponent [of]n, or more briefly as a top then. Some exponents
have their own pronunciation: for example,a2 is usually read asasquaredanda3asacubed.

When superscripts cannot be used, as in plain ASCII text, common alternative formats
include a^n and a**n.

C. Special Cases

A summary of special cases is shown in Table 1.1. These are useful in representing
exceptional cases like adding ∞ to ∞, multiplying ∞ to ∞ etc.,

i. De-normalized Numbers

A de-normalized number is any nonzero number with an exponent field of 0. The exponent

offset is 1023, but for the case when the value in the exponent field is 0, then the offset is
changed to 1022. The value multiplied by the mantissa is 2^ (-1022). The exponent offset is

changed to 1022 because for de-normalized numbers, the implied leading ‗1‘ is no longer
included. So to calculate the actual value of a de-normalized number, you multiply 2^ (-
1022) by the mantissa without the leading ‗1‘. The range of values that can be represented by

a de-normalized number is approximately 2.225e-308 to 4.94e-324.
For example, the number 2e-309 is represented in the double precision floating point

ii. Infinity

The behavior of infinity in floating-point arithmetic is derived from the limiting cases of real

arithmetic with operands of arbitrarily large magnitude, when such a limit exists. Infinities
shall be interpreted in the affine sense, that is: −∞ < {every finite number} < +∞. Operations

http://en.wikipedia.org/wiki/Exponent
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Operation_(mathematics)
http://en.wikipedia.org/wiki/Radix
http://en.wikipedia.org/wiki/Positive_integer
http://en.wikipedia.org/wiki/Multiplication

International Journal Of Engineering Research& Management Technology

 Email: editor@ijermt.org Website: ijermt.org

www.ijermt.org Page 19

ISSN: 2348-4039

 March 2014 Volume-1, Issue-2

March 2014

on infinite operands are usually exact and therefore signal no exceptions, including, among

others,

 Addition (∞, x), addition(x, ∞), subtraction (∞, x), or subtraction (x, ∞), for finite x

 Multiplication (∞, x) or multiplication(x, ∞) for finite or infinite x ≠ 0
 Division (∞, x) or division(x, ∞) for finite x

iii. NaN

A NaN is (not a number) — a symbolic floating-point datum. There are two kinds of NaN
representations: quiet and signaling. Most operations propagate quiet NaNs without signaling

exceptions, and signal the invalid operation exception when given a signaling NaN operand.
Quiet NaNs are used to propagate errors resulting from invalid operations or values, whereas

signaling NaNs can support advanced features such as mixing numerical and symbolic
computation or other extensions to basic floating-point arithmetic. For example, 0/0 is
undefined as a real number, and so represented by NaN; the square root of a negative number

is imaginary, and thus not represent able as a real floating-point number, and so is
represented by NaN; and NaNs may be used to represent missing values in computations.

I. Double Precision Floating Point

Double precision is a computer numbering format that occupies two adjacent storage

locations in computer memory. A double precision number, sometimes simply called a
double, may be defined to be an integer, fixed point, or floating point. Modern computers

with 32-bit storage locations use two memory locations to store a 64-
bit double precision number (a single storage location can hold a single precision number).

 Fig.1.3 Double precision floating point format

Double precision floating point is an IEEE-754 standard for encoding binary or decimal

floating point numbers in 64 bits. Double precision binary floating-point is a commonly used
format on PCs, due to its wider range over single precision floating point, even if it's at a

performance and bandwidth cost. As with single precision floating point format, it lacks
precision on integer numbers when compared with an integer format of the same size. It is
commonly known simply as double. The IEEE 754 standard defines a double as

 Sign bit: 1 bit
 Exponent width: 11 bits

 Significant precision: 53 bits (52 explicitly stored)
The format is written with the significant having an implicit integer bit of value 1, unless the
written exponent is all zeros. With the 52 bits of the fraction significant appearing in the

memory format, the total precision is therefore 53 bits (approximately 16 decimal

digits,log102
53≈ = 15.95. The bits are laid out as shown in fig 1.3

The real value assumed by a given 64 bit double precision data with a given biased
exponent and a52 bit fraction can be more precisely,

1

sign
bit

11 bits-

exponent

53-bits significant

International Journal Of Engineering Research& Management Technology

 Email: editor@ijermt.org Website: ijermt.org

www.ijermt.org Page 20

ISSN: 2348-4039

 March 2014 Volume-1, Issue-2

March 2014

II. Quadruple Precision Floating Point

 In computing, quadruple precision (also commonly shortened to quad precision) is a binary

floating-point-based computer number format that occupies 16 bytes (128 bits) in computer
memory and whose precision is about twice the 53-bit double precision.

This 128 bit quadruple precision is designed not only for applications requiring results in

higher than double precision,[1] but also, as a primary function, to allow the computation of
double precision results more reliably and accurately by minimizing overflow and round-off

errors in intermediate calculations and scratch variables: as William Kahan, primary architect
of the original IEEE-754 floating point standard noted, "For now the 10-byte Extended
format is a tolerable compromise between the value of extra-precise arithmetic and the price

of implementing it to run fast; very soon two more bytes of precision will become tolerable,
and ultimately a 16-byte format... That kind of gradual evolution towards wider precision was

already in view when IEEE standard 754 for Floating-Point Arithmetic was framed."This
gives from 33 - 36 significant decimal digits precision (if a decimal string with at most 33
significant decimal is converted to IEEE 754 quadruple precision and then converted back to

the same number of significant decimal, then the final string should match the original; and if
an IEEE 754 quadruple precision is converted to a decimal string with at least 36 significant

decimal and then converted back to quadruple, then the final number must match the
original).

The format is written with an implicit lead bit with value 1 unless the exponent is stored with

all zeros. Thus only 112 bits of the significant appear in the memory format, but the total

precision is 113 bits (approximately 34 decimal digits,). The bits

are laid out as follows:

 Sign bit: 1 bit
 Exponent width: 15 bits
 Significant precision: 112 bits

III. Implementation & Simulation of Floating Point

A. Addition

In this Float64 Add is a block name that is provided for free in the form of Verilogcode. The

code is difficult to read because of removed text formatting and identifiers replaced with
automatically generated strings. The fully functional code that should work correctly in any
simulation and synthesis tool can be designed

1 sign

bit

15 bits-

exponent

112 bits

significant

http://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#cite_note-1

International Journal Of Engineering Research& Management Technology

 Email: editor@ijermt.org Website: ijermt.org

www.ijermt.org Page 21

ISSN: 2348-4039

 March 2014 Volume-1, Issue-2

March 2014

Fig 1.2 Floating Point Addition

 Fig 1.3 Floating Point Addition Simulation

B. Subtraction

In this Float64 Sub is a block name that is provided for free in the form of Verilogcode. The
code is difficult to read because of removed text formatting and identifiers replaced with

automatically generated strings.

International Journal Of Engineering Research& Management Technology

 Email: editor@ijermt.org Website: ijermt.org

www.ijermt.org Page 22

ISSN: 2348-4039

 March 2014 Volume-1, Issue-2

March 2014

 Fig 1.4 Floating Point Subtraction

 Fig 1.5 Floating Point Subtraction Simulation

C. Multiplication

 Fig 1.6 Floating Po int Multip licat ion

International Journal Of Engineering Research& Management Technology

 Email: editor@ijermt.org Website: ijermt.org

www.ijermt.org Page 23

ISSN: 2348-4039

 March 2014 Volume-1, Issue-2

March 2014

 Fig 1.7 Floating Point Multiplication Simulation

D. Division:

 Fig 1.8 Floating Point Division

International Journal Of Engineering Research& Management Technology

 Email: editor@ijermt.org Website: ijermt.org

www.ijermt.org Page 24

ISSN: 2348-4039

 March 2014 Volume-1, Issue-2

March 2014

 Fig 1.9 Floating Point Division Simulation

References

1. Geetanjali Wasson, ―IEEE-754 compliant algorithms for fast mult iplication of double precision floating

point numbers‖ International Journal o f Research in Computer Science, eISSN 2249-8265 Volume1 Issue

1(2011) pp.1-7

2. B. C. Jinaga, Saroja. V Siddamal, R. M. Bankar, ―Design of high -speed floating point mult iplier‖, 4
th

 IEEE

International symposium on Electronic Design, Test & Applications, IEEE co mputer society,2008, pp.285-

289.

3. Yunhua Wang, Linda S. DeBrunner, Dayong Zhou, Victor E. DeBrunner, ―A novel multip lier less hardware

implementation method for adaptive filter coefficients, ICASSP 2007.

4. S. Jagadeesh, S. Venkata chary ― Design of parallel mult iplier- accumulator based on Radix-4 modified

Booth algorithm with SPST‖ , International Journal of Engineering research and applications, volume 2,

issue 5,September-october 2012, pp.425-431.

5. Yunhua Wang, ―Iterative radix-8 multip lier structure based on a novel real-time CSD recoding‖ ACSSC

2007, conference record of 41
st

 Asilomar conference on signals, systems& computers, 2007, pp. 977-981.

6. Sang-min Kim, ―Low error fixed-width CSD multip lier with efficient sign extension‖, IEEE t ransactions on

circuits and systems-II analog and digital signal processing, volume 50, December 2003.

7. M. Saad, M. Taher, ―High speed area efficient FPGA based floating point arithmetic modules‖, National

conference on radio science, March 2007, pp. 1-8.

8. Mrs. Pushpawathi changlekar, Mrs. Su jatha, ―Implementation of Binary Canonic Signed Dig it mult iplier

using Application specific IC‖, International journal of engineering research and applications, volume 3,

Issue 1, Jan- Feb 2013, pp.1912-1915.

9. Cetin K. KOC, Chin -Yu Hung, ―Adaptive m-ary segmentation and Canonical recoding algorithms for

multip licat ion of large binary numbers‖, Computers Math. Applications. Vol 24, No.3, pp. 3 -12, 1992.

10. Kavita, Jasbir Kaur, ―Design and implementation of an efficient modified booth mult iplier using VHDL‖,

proceedings of 2
nd

 international conference on emerging trends in engineering and management, Ju ly 2013.

